skip to main content


Search for: All records

Creators/Authors contains: "Esparza, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pamucar, Dragan (Ed.)
    Critical thinking is the process by which people make decisions about what to trust and what to do. Many undergraduate courses, such as those in biology and physics, include critical thinking as an important learning goal. Assessing critical thinking, however, is non-trivial, with mixed recommendations for how to assess critical thinking as part of instruction. Here we evaluate the efficacy of assessment questions to probe students’ critical thinking skills in the context of biology and physics. We use two research-based standardized critical thinking instruments known as the Biology Lab Inventory of Critical Thinking in Ecology (Eco-BLIC) and Physics Lab Inventory of Critical Thinking (PLIC). These instruments provide experimental scenarios and pose questions asking students to evaluate what to trust and what to do regarding the quality of experimental designs and data. Using more than 3000 student responses from over 20 institutions, we sought to understand what features of the assessment questions elicit student critical thinking. Specifically, we investigated (a) how students critically evaluate aspects of research studies in biology and physics when they are individually evaluating one study at a time versus comparing and contrasting two and (b) whether individual evaluation questions are needed to encourage students to engage in critical thinking when comparing and contrasting. We found that students are more critical when making comparisons between two studies than when evaluating each study individually. Also, compare-and-contrast questions are sufficient for eliciting critical thinking, with students providing similar answers regardless of if the individual evaluation questions are included. This research offers new insight on the types of assessment questions that elicit critical thinking at the introductory undergraduate level; specifically, we recommend instructors incorporate more compare-and-contrast questions related to experimental design in their courses and assessments. 
    more » « less
  2. Abstract Field courses provide transformative learning experiences that support success and improve persistence for science, technology, engineering, and mathematics majors. But field courses have not increased proportionally with the number of students in the natural sciences. We conducted a scoping review to investigate the factors influencing undergraduate participation in and the outcomes from field courses in the United States. Our search yielded 61 articles, from which we classified the knowledge, affect, behavior, and skill-based outcomes resulting from field course participation. We found consistent reporting on course design but little reporting on demographics, which limits our understanding of who takes field courses. Cost was the most commonly reported barrier to student participation, and knowledge gains were the most commonly reported outcome. This scoping review underscores the need for more rigorous and evidence-based investigations of student outcomes in field courses. Understanding how field courses support or hinder student engagement is necessary to make them more accessible to all students. 
    more » « less
  3. Abstract

    Critical thinking, which can be defined as the evidence‐based ways in which people decide what to trust and what to do, is an important competency included in many undergraduate science, technology, engineering, and mathematics (STEM) courses. To help instructors effectively measure critical thinking, we developed the Biology Lab Inventory of Critical Thinking in Ecology (Eco‐BLIC), a freely available, closed‐response assessment of undergraduate students' critical thinking in ecology. The Eco‐BLIC includes ecology‐based experimental scenarios followed by questions that measure how students decide on what to trust and what to do next. Here, we present the development of the Eco‐BLIC using tests of validity and reliability. Using student responses to questions and think‐aloud interviews, we demonstrate the effectiveness of the Eco‐BLIC at measuring students' critical thinking skills. We find that while students generally think like experts while evaluating what to trust, students' responses are less expert‐like when deciding on what to do next.

     
    more » « less
  4. Braun, Derek (Ed.)
    Course-based undergraduate research experiences (CUREs), which often engage students as early as freshman year, have become increasingly common in biology curricula. While many studies have highlighted the benefits of CUREs, little attention has been paid to responsible and ethical conduct of research (RECR) education in such contexts. Given this observation, we adopted a mixed methods approach to explore the extent to which RECR education is being implemented and assessed in biological sciences CUREs nationwide. Survey and semistructured interview data show a general awareness of the importance of incorporating RECR education into CUREs, with all respondents addressing at least one RECR topic in their courses. However, integration of RECR education within the CURE environment primarily focuses on the application of RECR during research practice, often takes the form of corrective measures, and appears to be rarely assessed. Participants reported lack of time and materials as the main barriers to purposeful inclusion of RECR education within their courses. These results underscore a need for the CURE community to develop resources and effective models to integrate RECR education into biology CUREs. 
    more » « less
  5. Abraham, Joel K. (Ed.)
    Undergraduate research experiences in science, technology, engineering, and mathematics fields are championed for promoting students’ personal and professional development. Mentorship is an integral part of undergraduate research, as effective mentorship maximizes the benefits undergraduates realize from participating in research. Yet almost no research examines instances in which mentoring is less effective or even problematic, even though prior research on mentoring in workplace settings suggests negative mentoring experiences are common. Here, we report the results of a qualitative study to define and characterize negative mentoring experiences of undergraduate life science researchers. Undergraduate researchers in our study reported seven major ways they experienced negative mentoring: absenteeism, abuse of power, interpersonal mismatch, lack of career support, lack of psychosocial support, misaligned expectations, and unequal treatment. They described some of these experiences as the result of absence of positive mentoring behavior and others as actively harmful behavior, both of which they perceive as detrimental to their psychosocial and career development. Our results are useful to mentors for reflecting on ways their behaviors might be perceived as harmful or unhelpful. These findings can also serve as a foundation for future research aimed at examining the prevalence and impact of negative mentoring experiences in undergraduate research. 
    more » « less
  6. Advancement of the scientific enterprise relies on individuals conducting research in an ethical and responsible manner. Educating emergent scholars in the principles of ethics/responsible conduct of research (E/RCR) is therefore critical to ensuring such advancement. The recent impetus to include authentic research opportunities as part of the undergraduate curriculum, via course-based undergraduate research experiences (CUREs), has been shown to increase cognitive and noncognitive student outcomes. Because of these important benefits, CUREs are becoming more common and often constitute the first research experience for many students. However, despite the importance of E/RCR in the research process, we know of few efforts to incorporate E/RCR education into CUREs. The Ethics Network for Course-based Opportunities in Undergraduate Research (ENCOUR) was created to address this concern and promote the integration of E/RCR within CUREs in the biological sciences and related disciplines. During the inaugural ENCOUR meeting, a four-pronged approach was used to develop guidelines for the effective integration of E/RCR in CUREs. This approach included: 1) defining appropriate student learning objectives; 2) identifying relevant curriculum; 3) identifying relevant assessments; and 4) defining key aspects of professional development for CURE facilitators. Meeting outcomes, including the aforementioned E/RCR guidelines, are described herein. 
    more » « less